## RS Aggarwal Class 8 Solutions Chapter 14 Polygons Ex 14B

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 14 Polygons Ex 14B.

**Other Exercises**

- RS Aggarwal Solutions Class 8 Chapter 14 Polygons Ex 14A
- RS Aggarwal Solutions Class 8 Chapter 14 Polygons Ex 14B

**Question 1.**

**Solution:**

In a pentagon, no. of diagonals

\(=\frac { n\left( n-3 \right) }{ 2 }\)

\(=\frac { 5\left( 5-3 \right) }{ 2 }\)

\( =\frac { 5\times 2 }{ 2 } \)

= 5 (a)

**Question 2.**

**Solution:**

In a hexagon, no. of diagonals

\(=\frac { n\left( n-3 \right) }{ 2 }\)

\(=\frac { 6\left( 6-3 \right) }{ 2 }\)

\( =\frac { 6\times 3 }{ 2 } \)

= 9 (c)

**Question 3.**

**Solution:**

In an octagon, no. of diagonals

\(=\frac { n\left( n-3 \right) }{ 2 }\)

\(=\frac { 8\left( 8-3 \right) }{ 2 }\)

\( =\frac { 8\times 5 }{ 2 } \)

= 20 (d)

**Question 4.**

**Solution:**

In a polygon of 12 sides, no. of diagonals

\(=\frac { n\left( n-3 \right) }{ 2 }\)

\(=\frac { 12\left( 12-3 \right) }{ 2 }\)

\( =\frac { 12\times 9 }{ 2 } \)

= 54 (c)

**Question 5.**

**Solution:**

A polygon has 27 diagonal

Either n – 9 = 0, then n = 9

or n + 6 = 0, then n = – 6 but it is not possible being negative

No. of sides = 9 (c)

**Question 6.**

**Solution:**

Angles of a pentagon are x°, (x + 20)°, (x + 40)°, (x + 60°) and (x + 80)°

But sum of angle of a pentagon

**Question 7.**

**Solution:**

Measure of each exterior angle = 40°

No. of sides = \(\frac { { 360 }^{ o } }{ 40 }\)9 sides (b)

**Question 8.**

**Solution:**

Each interior angle of a polygon = 108°

**Question 9.**

**Solution:**

Each interior angle = 135°

**Question 10.**

**Solution:**

Let each exterior angle = x, then

Each interior angles = 3n

But sum of angle = 180°

x + 3x = 180°

=>4x = 180°

=> x = 45°

No. of sides = \(\frac { { 360 }^{ o } }{ 45 } \)

= 8 sides (b)

**Question 11.**

**Solution:**

Each interior angles of decagon

**Question 12.**

**Solution:**

Sum of all interior angles of a hexagon

= (2n – 4) x right angle

= (2 x 6 – 4) right angle

= 8 right angles (b)

**Question 13.**

**Solution:**

Sum of all interior angles of polygon = 1080°

Let n be the number of sides, then

(2n – 4) x 90°= 1080°

**Question 14.**

**Solution:**

Difference between each interior and exterior angle = 108°

Then each interior angle = x + 108°

x + x + 108°= 180°

(Sum of both angles = 180°)

=> 2x = 180° – 108° = 72°

x = \(\\ \frac { 72 }{ 2 } \)

= 36°

No. of sides = \( \frac { { 360 }^{ o } }{ { 36 }^{ o } } \)

= 10 (d)

Hope given RS Aggarwal Solutions Class 8 Chapter 14 Polygons Ex 14B are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

Shoaib Akhtar says

I am very very thankful to you