## RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1H

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1H.

**Other Exercises**

- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1A
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1B
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1C
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1D
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1E
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1F
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1G
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1H

**Objective Questions :**

**Tick the correct answer in each of the following :**

**Question 1.**

**Solution:**

Answer = (c)

**Question 2.**

**Solution:**

**Question 3.**

**Solution:**

**Question 4.**

**Solution:**

**Question 5.**

**Solution:**

**Question 6.**

**Solution:**

**Question 7.**

**Solution:**

Answer = (b)

**Question 8.**

**Solution:**

**Question 9.**

**Solution:**

**Question 10.**

**Solution:**

**Question 11.**

**Solution:**

**Question 12.**

**Solution:**

Product of two numbers = \(\\ \frac { -28 }{ 81 } \)

One number = \(\\ \frac { 14 }{ 27 } \)

**Question 13.**

**Solution:**

Answer = (c)

Let x be the required number, then

**Question 14.**

**Solution:**

Answer = (d)

Let x is to be subtracted then

**Question 15.**

**Solution:**

Answer = (c)

sum = -3,one number = \(\\ \frac { -10 }{ 3 } \)

**Question 16.**

**Solution:**

Answer = (c)

We know that a number is called in standard form if the numerator and denominator has no common divisor except 1.

\(\\ \frac { -9 }{ 6 } \) is in standard form.

**Question 17.**

**Solution:**

**Question 18.**

**Solution:**

Answer = (b)

**Question 19.**

**Solution:**

Answer = (d)

Let x is required rational

**Question 20.**

**Solution:**

Additive inverse of \(\\ \frac { -5 }{ 9 } \) is = – \(\left( \frac { -5 }{ 9 } \right) \)

**Question 21.**

**Solution:**

Reciprocal of \(\\ \frac { -3 }{ 4 } \) is \(\\ \frac { -4 }{ 3 } \)

**Question 22.**

**Solution:**

A rational number between = \(\\ \frac { -2 }{ 3 } \)

**Question 23.**

**Solution:**

Answer: (b)

The reciprocal of a negative rational

the number is also a negative rational number.

Hope given RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1H are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

Krish says

Thank s of study